Hisser les pierres le long d’une face de la pyramide

Les ascenseurs hydrauliques à flotteurs se sont montrés très performants pour hisser tous les blocs constituant les pyramides, cependant pyramide terminée, roi inhumé, il a fallu reboucher cages et puits qui constituaient les ascenseurs afin de rendre le roi inaccessible pour toujours.

Cette opération ne pouvait se faire que de haut en bas, il a donc fallu faire monter les pierres servant à ce rebouchage au sommet de la pyramide afin les mettre en oeuvre pour cette finalité.

La seule solution accessible était alors de les hisser le long d’une face de la pyramide, à l’aide de cordes et d’une « poulie »de renvoi accrochée à un portique provisoire posé au sommet de la pyramide à cet effet.

portique

Les dispositifs pour hisser les opérateurs, probablement de simples cordes de rappel, posées le long d’une face de la pyramide permettant aux opérateurs de grimper en marchant le long de la paroi de la pyramide en se tirant sur la corde..,  étaient déjà en place pour le fonctionnement des ascenseurs hydrauliques permettant une fois encore la mise en application du principe général de levage dans les pyramides : le poids des hommes qui descendent est égal au poids des pierres qui montent, mais il a fallu pour ça que les hommes commencent par monter avec leurs bras et leurs jambes jusqu’au sommet de la pyramide.

La méthode aurait pu être la suivante: Une double corde est attachée au chariot qui porte la pierre à hisser,

Chariotelle passe sur la poulie, des hommes s’accrochent au brin qui redescend, quand ils sont suffisamment nombreux, le dernier à s’accrocher fait monter la pierre. Quand le premier de cordée touche le sol la pierre s’arrête, il en faudra de nouveaux à s’accrocher à la corde depuis une certaine hauteur le long de la face de la pyramide pour que la pierre atteigne le seuil de la cage. Entre dix et quinze opérateurs (+/- lestés) font monter une pierre de une tonne.

Suivant le même principe général utilisé pour le déplacement des pierres, le chariot roule sur des rouleaux qui ici sont cylindriques et en bois dur au lieu d’être à plots de pierres. Dans cette application la charge est « faible » de l’ordre de 1 t ce que des rouleaux en bois peuvent encaisser. L’utilisation de rouleaux en bois évite d’avoir à poser un chemin de roulement le long de la face de la pyramide, les rouleaux s’appuient directement sur le parement qui est lisse et plan sans risque de le détériorer, ni de laisser des traces de passage.

Une fois la première pierre élevée, elle va redescendre à la verticale accrochée à ses cordes  le long d’une cage ou d’un puits, ces cordes feront monter autant d’opérateurs que le poids de la pierre qui descend le permet, on obtient ainsi une descente 100% contrôlée, ainsi que la récupération de l’énergie potentielle de chaque pierre  pour sa longueur de descente.

Il y aura donc une paire de cordes accrochées au bloc qui monte,  sur l’autre brin les opérateurs commencent par descendre pour faire monter la pierre, puis remontent pour freiner celle-ci dans sa descente.

Un troisième corde est accrochée au chariot lui même et passe dans la poulie, cette corde permettant la redescende contrôlée du chariot une fois le bloc enlevé, en faisant remonter un ou deux opérateurs.

Par cette méthode une pierre était hissée de la base au sommet 140 m plus haut en quelques secondes, par contre la descente dans les cages et puits était plus compliquée car les 5 étages de cages et puits n’étaient pas alignés, il fallait passer par des renvois de cordes pour aller jusqu’à la base.

Il y avait environ 1000 M³ de cages et de puits à combler, soit de l’ordre de 1000 blocs potentiellement. A ce jour nul ne sait si ces volumes ont été totalement comblés ou seulement partiellement en laissant des voûtes en encorbellement ( comme dans les pyramides précédentes) faisant office de barrages. L’exploration de la maçonnerie autour du boyau de la niche de la chambre basse serait une source d’information sur la solution retenue.

Le portique aurait pu être conçu de telle façon que la poulie puisse être déplacée afin de se trouver, non seulement centrée sur l’axe de la dernière cage, mais aussi ajustée pour la pose des derniers blocs du parement et finalement du pyramidon. Ces blocs étant élevés à la hauteur voulue toujours par la même méthode.

Pyramide terminée, il ne restait qu’à demonter et redescendre le portique et la poulie.

 

 

Maquette de référence

Je me suis longtemps demandé à partir de quel documents ce chantier de 20 ans impliquant des milliers de personnes sur une étendue géographique de 1000 km avait-il pu travailler?

Mon ancienne expérience industrielle basée sur une documentation papier et tirage de plans m’avait induit en erreur, ce système de documentation a depuis quelques temps complètement disparu remplacé par des dossiers numériques totalement virtuels, ce n’était donc pas historiquement un système stable, il a été remplacé, quelque chose d’autre aurait pu exister avant lui.

Inutile de rappeler que les anciens égyptiens étaient passés maîtres dans l’art de tailler dans la pierre même la plus dure toutes sortes d’objets même aux formes les plus complexes avec une grande précision.

Je propose donc que « le dossier de fabrication » de la pyramide n’aurait jamais été sous forme « papyrus » mais sous forme maquette 3D, comme aujourd’hui en fait, mais pas numérisée et transformés en impulsions électro-magnétiques sur un support microscopique, accessibles seulement avec un type d’ordinateur bien défini, le tout pouvant très facilement et totalement disparaître en un instant très bref.

Non la maquette 3D à la quelle je fais allusion aurait été sous forme d’objets en pierre taillée représentant à échelle réduite les même objets dans la pyramide et servant de modèle pour les tailleurs de pierre qui n’avaient qu’à réaliser à échelle 1 ce qu’ils avaient sous la main.

Par exemple, la chambre haute entièrement réalisée en granite aurait pu avoir deux modèles identiques, un sur le chantier de montage à Gizeh, l’autre sur le lieu de la carrière à Assouan 1000 KM plus au sud.

Celui d’Assouan servant à réaliser les blocs, celui de Gizeh à les contrôler et guider de montage.

Ce modèle est précis, solide, la pluie ne peut le détruire, seulement le nettoyer, le vent ne peut l’emporter, pas besoin de savoir écrire, ni lire, ni même parler la langue, seulement savoir mesurer et reproduire. Chaque pièce approuvée était gravée du sceau du maître d’oeuvre. Ces maquettes étaient probablement en granite ou diorite ou autre pierre très dure que seuls les ateliers spécialement équipés pouvaient travailler.

Ce système protège contre la falsification d’un document et freine la tendance bien connue dans les bureaux d’étude à vouloir changer les plans pour « améliorer » le produit fini, car il fallait passer pour ça par le filtre de l’atelier de modelage garant de l’intégrité de la pyramide placé sous la haute et vigilante autorité du maître d’oeuvre.

De plus il y avait validation technique immédiate, car une erreur de conception avait la conséquence d’être visible et vérifiable par tous les acteurs autorisés examinant le nouveau modèle avant de l’approuver.

Le « bureau d’études » était au grand air, le marteau et le burin faisaient office de crayon, la pierre de papier, la gomme: un coup de marteau et on recommence!

Je pense que seule la partie ouvragée de la pyramide était ainsi représentée, les chambres, les galeries , le parement, moins de 1% du volume de la pyramide, le remplissage 99% du volume ne faisant l’objet que de consignes de principe, dont la hauteur d’assise « du jour » les monteurs sur l’assise travaillant un peu comme ces bâtisseurs de murs en pierres sèches espèce aujourd’hui quasiment disparue dont on peut encore admirer les oeuvres.

La différence était alors que la pierre ne tenait pas dans la main et pouvait peser plusieurs tonnes, l’observation de l’assise 201 de la grande pyramide pourrait décourager les contestataires de cette comparaison.

En plus de l’expérience du calepinage « sur le tas », il fallait une solide organisation de la logistique de manipulation de blocs très lourds pour un flux de 400 blocs par jour. Pas besoin de documents, une routine en tenait lieu

Seuls certains blocs de remplissage aux limites des maçonneries et du parement avaient besoin d’être retaillés, probablement sur l’assise à l’emplacement de la pose au vu du besoin, pas de document le savoir faire du tailleur de pierres en tenait lieu.

Les carriers travaillaient pour sortie du banc de taille un muret dont la l’épaisseur faisait la hauteur d’assise « du jour » et la hauteur l’épaisseur de la couche géologique sur laquelle était pris le banc de taille. La largeur faisait l’objet d’une directive générale « du jour » sans exigence de précision était réalisée au mieux en fonction des failles présentes sur le banc de taille, pour le reste un « géant bélier » cassait le muret en morceaux comme un casse un sucre tout en le « démisant » (terme de carriers pour désigner le détachement d’un bloc de la marne ou de l’argile qui sépare deux couches géologiques)

La maquette assemblait en les montrant touts les dispositifs internes connectés entre eux et la maçonnerie centrale leur servant de support, chacun de ces dispositifs pouvant être retiré de l’ensemble pour être examiné et servir de modèle pour les tailleurs de pierre.

Une demi pyramide coupée exactement sur le plan de son axe NS était placée juste à coté de la maquette des volumes internes, ce qui explique que le plan axial des galeries de la distribution interne ait été décalé de 14 coudées à l’est de l’axe NS de la pyramide, ce plan permettant de prendre les cotes de positionnement EO de tous les objets à poser dans la pyramide.

Seules les chambres haute et basse, la grotte et le complexe mortuaire pouvaient être coupées en deux par ce plan, la partie ouest encastrés dans le plan central, montrant leur intérieur aussi bien coté est que coté ouest.

Ce décalage de 14 coudées suggère que le ratio de réduction devait justement être de 14/1, laissant un espace de 1 coudée pour circuler entre le plan central et la maçonnerie pour prendre les mesures. Cette maquette aurait fait 20 coudées de hauteur et 31 coudées et 12 doigts ou une grande griffe pour les cotés, laissant un volume interne assez conséquent pour contenir, à l’ombre, le bureau de l’architecte de service!

Des pièces importantes comme les poutres fermant le plafond de la chambre haute n’auraient pesé que 10 kg et tout en mesurant de l’ordre d’une coudée pouvaient être facilement manipulées et servir de modèle à la fois pour la réalisation mais aussi pour préparer les manutentions.

Cette demi pyramide devait être placée au sud de la pyramide en construction pour que le soleil servant de point de repère ne soit pas masqué par la pyramide. Ainsi l’orientation très précise vers le sud pouvait être progressivement devenir de plus en plus fine, permettant aussi aux géomètres du projet de s’entraîner à utiliser les arêtes et faces de la pyramide entrant dans l’ombre du soleil à certaine heures du jours certains jours de l’année pour contrôler les alignements.

 

Renvoi de cordes à rouleaux

La méthode générale du chantier utilisait peu la corde, mais il en était quand même besoin, pour soulever d’environ 0.5 m les blocs fraîchement extraits du banc de taille pour les poser sur leurs roulements, pour élever de 6 m le lest nécessaire au fonctionnement de l’élévateur du puits oriental situé sur la chaussée d’accès à la pyramide et à la fin pyramide terminée pour faire s’élever les blocs de rebouchage à 140 m de la base afin de leur faire gagner la dernière cage et par là leur faire faire une descente contrôlée suspendus à une corde.

Toutes ces actions nécessitaient des renvois de corde qui aujourd’hui seraient fait par des poulies, mais à l’époque de la construction des pyramides, le poulies souffraient du même inconvénient que la roue pour supporter des charges de plusieurs tonnes:

Il fallait un axe qui résiste à cette charge, ce qui n’était pas évident avec du bois ou du cuivre, mais ce n’est pas tout, il y avait le problème de la rotation de la poulie sur cet axe qui aurait dû être d’un diamètre conséquent et donc provoquer un frottement important qui aurait absorbé trop d’énergie et sans doute une usure rapide.

On pourrait m’objecter qu’ils pouvaient lubrifier la rotation de la poulie sur son axe, ce qui est exact, mais sur en chantier en plein air exposé aux vents fréquents du désert tout proche, en conséquence le sable se mélangeant rapidement à la graisse ou à l’huile de lubrification en aurait fait de la pâte abrasive!

Néanmoins le nombre nécessaire de ces renvoi de corde n’était pas très conséquent, de l’ordre d’une centaine tout au plus, les constructeurs pouvaient donc les « fignoler » en réutilisant la technique du fonctionnement des rouleaux à plot des patins autonomes.

J’ai représenté ici des rouleaux de section circulaire, mais des rouleaux à plots auraient bien pu tout aussi bien convenir, diamètre environ 5 cm, largeur 10 cm taillés dans du granite ou de la diorite, avec un trou axial pour contenir un axe qui servira a tenir les « maillons » fait avec du cordonnet.Rouleaux

Les « maillons » n’ont pas d’effort à tenir, seulement maintenir les rouleaux à la bonne distance.

A l’intérieur de la chenille circulaire se trouve l’axe de la poulie, les rouleaux tournent dessus, chaque rouleau fait à la fois une rotation sur lui même et se déplace le long de la surface de l’axe qui est en fait la poulie.

On place une deuxième chenille un peu plus loin sur l’axe, l’ensemble est posé sur un support semi-ouvert et l’on obtient une magnifique poulie, sur roulements à rouleaux avec une résistance à la rotation extrêmement faible car il n’y a pas de frottements, seulement une micro déformation de l’axe au droit de la ligne de contact avec le rouleau.

Poulie

Il est avantageux pour le rendement que le logement dans lequel tournent les rouleaux soit aussi en pierre dure, granite ou diorite. Je l’ai représenté en forme semi-cylindrique, mais c’est un luxe, un logement en V ou en U ferait tout aussi bien l’affaire!

Il n’y a rien dans ce dispositif qui ne soit accessible aux anciens égyptiens .

Si la charge est très lourde, il suffit d’augmenter le diamètre de l’axe et de rajouter des rouleaux dans la chenille, avec un logement plus grand.

PI et PHI

Un nombre important d’auteurs ont associé la grande pyramide avec la constante PI et le nombre d’or PHI.

PI:

Dans la pyramide de Chéops, le rapport du 1/2 périmètre de la base sur la hauteur (440 x 2) / 280 qui se réduit à 22/7 est égal à 3.142857, très proche du nombre π à 4/10 000, ce qui fait dire a bien des auteurs que les ancients égyptiens connaissaient le nombre π.

Ceci n’a aucun sens au regard de la façon dont les anciens égyptiens calculaient, ils n’utilisaient pas la notation décimale des nombres, un nombre non entier était toujours représenté par une addition d’entier et de fractions inverse d’un nombre.

Donc pour eux 3.14159 … etc… n’avait aucune existence.

S’ils avaient voulu représenter la valeur 22 / 7, ils l’auraient notée 3 + une palme, la palme étant le 1/7 de la coudée.

Le papyrus de RIND donne deux informations importantes:

Les anciens égyptiens ne faisaient pas de multiplications à partir d’une valeur constante, mais raisonnaient par analogie, comme dans cette recette pour la surface d’un cercle: « si tu veux la surface d’un cercle de diamètre 9 prend celle d’un carré de coté 8 ». pour un autre diamètre ils faisaient une règle de trois.

Si l’on développe, le π Égyptien de cette formule était la fraction 256 / 81 ou 3 + 1/7 + 1/81 + 1/567  avec un erreur de 0.6% par rapport à π.

Indirectement la pyramide nous donne la formule qu’ils utilisaient pour calculer la circonférence d’un cercle connaissant son diamètre, « si tu veux le périmètre d’un cercle de diamètre 14 prend celui d’un carré de coté 11 ».

Ce qui donne une autre valeur du  π égyptien = 22/7.

Si l’on cherche quel diamètre de cercle donne un périmètre de 6 coudées on trouve 21/11 coudées, si l’on prenait ce diamètre comme unité de mesure de longueur égale au mètre, la coudée vaudrait 11/21 = 0.5238 m.

PHI:

Contrairement à π, le nombre d’or est défini par un rapport de deux longueurs:

soit deux segments AB et AD avec AD > AB,

φ est tel que (AB + AD) / AD est égal à AD / AB

PHI

Sa valeur approchée en notation décimale est 1.618034 ce qui n’avait aucun sens pour les anciens égyptiens, par contre il leur était facile de tracer directement un rectangle aux proportions du nombre d’or sans faire de calculs, comme l’exemple ci-dessus.

On notera au passage que le triangle ABC est aux proportions de la pente des galeries dans les pyramides.

Élever 65 t de lest à 6 m de hauteur

Les anciens égyptiens constructeurs des pyramides ont fait un usage immodéré de lest pour soulever les pierres.

Cela peut paraître paradoxal que du poids puisse soulever du poids, mais quand on a compris le fonctionnement du flotteur élévateur submersible, ou du flotteur oscillant cela devient évident.

Les fouilles du site de Waadi el Jarf au bord de la mer rouge par le professeur P.Tallet ont fait découvrir que les constructeurs des pyramides de Gizeh avaient établi une ligne logistique entre la pyramide et les mines de cuivre situées dans le Sinaï. C’est donc que la consommation de cuivre par ces constructions était conséquente.

Une des applications importante du flotteur submersible de la deuxième génération, se trouve dans la fosse à barque située à l’Est de la pyramide à 60 m environ de sa face orientale, à peu près centrée sur celle-ci.

Fosse vue du ciel

La tâche de cette fosse fut d’élever d’environ 6 m tous les blocs en provenance de la chaussée reliant la plaine du Nil au chantier de la pyramide. Parmi ces blocs se sont trouvés une centaine de mégalithes du toit de la chambre haute, et probablement plus avec les toits du complexe funéraire encore à découvrir.

Ces « monstres » pesaient entre 30 et 65 t, il fallait donc faire couler le flotteur élévateur avec un poids pouvant légèrement dépasser 65 t, pour qu’il puisse en réaction élever le mégalithe quand celui-ci remplaçait le lest sur le plateau élévateur.

Barge-plateau
Flotteur élévateur de la fosse orientale

La configuration du plateau élévateur, ne laissant de disponible qu’une surface de 40 M² environ pour placer 65 t de lest, cela correspondait à une densité de 1.6 t / M², ce qui induit naturellement un lest fait de lingots de cuivre.

Mais avant de placer ces lingots sur le plateau du flotteur situé à environ 6 m de hauteur pour le faire couler, il fallait les élever d’autant depuis le sol sur lequel ils reposaient après avoir été précédemment débarqués du même plateau.

Les lingots de lest pouvant peser de l’ordre de 40 KG, en passant (trop) vite chacun peut penser qu’il suffisait « simplement » que des porteurs chargent un lingot sur le dos pour le monter à 6 m en prenant un escalier.

Mais pour les constructeurs cette méthode était une faute professionnelle dans l’utilisation de l’énergie produite par les ouvriers. En effet en prenant l’exemple de 60 KG pour le poids de l’ouvrier et 40 KG pour le lest, un cycle montée du lest descente de l’ouvrier, consommait 6 KJ à la monté et peut être 1 KJ à la descente, soit environ 7 KJ pour élever de 6 m une charge qui n’a pris au passage qu’une énergie potentielle de 2.4 KJ soit un rendement énergétique de l’ordre de 34%, bien en dessous de l’objectif général du chantier qui était toujours de 100%.

La méthode générique du chantier pour rechercher le 100% de rendement était de faire acquérir à l’opérateur une énergie potentielle en le faisant monter sur une hauteur, ici 6 m, pesant 60 KG cela faisait 3.6 KJ et lui faire restituer cette énergie en le laissant descendre sur un dispositif qui en échange faisait monter une charge très légèrement inférieure à son poids.

On imagine facilement une poulie située un peu plus haut que 6 m, d’un coté la corde monte par exemple 3 lingots de 40 KG et de l’autre descendent deux opérateurs pesant légèrement plus que 60 KG chacun.

On pouvait placer deux élévateurs de chaque coté donc 4 en tout, déplaçant 8 empilages de lingots, chacun pesant 8.125 t ( pour un peu moins que 1 M3) si la charge à élever pesait 65 t. Le complément pour faire couler le flotteur pouvant être apporté par quelques opérateurs montant sur le plateau.

Pour fixer les idées, en comptant 6 opérateurs par poulie, deux en bas au chargement , deux en haut à la réception et deux descendant avec la corde soit 24  en tout, ceux-ci pouvant développer une puissance cumulée de 3.6 KW, l’énergie totale consommée étant de 3900 KJ, il fallait 1080 s soit un peu plus de 20 minutes pour élever tout le lest et donc par la suite avec ce dispositif, un mégalithe de 65 t pouvait être élevé de 6 m par 24 opérateurs en moins d’une heure!

Mégalithes: entrée dans la pyramide

Toutes les pierres y compris les mégalithes devaient rejoindre le pas de chargement du premier étage de l’ascenseur au centre de la pyramide après avoir traversé la demi longueur de la base sous la pyramide dans une galerie de 115 m de long orientée Est Ouest partant du centre de la face orientale.

La mini grotte du puits de service, nous renseigne sur le niveau d’eau dans le puits du flotteur du premier étage, il est à + 3 m au dessus de la base. Afin de pouvoir charger les pierres à la volée, il faut que le plan de chargement se situe à environ 1.5 m au dessus de ce niveau, soit une hauteur de + 4.5 m au dessus de la base.

La résistance à l’avancement des blocs posés sur leurs roulements est de l’ordre de 1%, elle doit être compensée par une pente de même valeur, ce qui se traduit par une élévation du point de départ de 1.15 m pour que ce soit la force de la pesanteur qui compense cette résistance.

Enfin, il faut lancer les blocs à une certaine vitesse pour qu’ils traversent en toute autonomie, ce tunnel étroit et parfaitement sombre qui traverse la pyramide, en se fixant une vitesse de l’ordre de 4 KM/H, la trajet s’effectue en 2 minutes environ.

Pour accélérer les blocs à cette vitesse il faut ajouter une élévation de 0.1 m au point de départ, sur le trajet il y a un léger virage de 18° pour aligner la piste d’approche avec la galerie d’accès qui va provoquer un ralentissement qui doit être compensé par une surélévation de cinq centimètres  soit une hauteur de 3 + 1.5 + 1.15 + 0.15 = 5.7 m par rapport à la base.

La hauteur de 5.7 est probablement bonne à quelques centimètres près, mais pour ce qui est de la pente, les constructeurs avaient pris une toute autre décision sur la rampe de lancement qui ne fut pas en pente douce, mais en pente raide. En effet, tout le monde peut observer sur Google Street, un point situé près de centre de la face Est qui manifestement est le rebouchage de cette galerie d’entrée:

Entrée-Porte

Force est de constater que cette galerie au départ de son parcours dans la pyramide est au niveau de la base. Donc la rampe de lancement faisait une pente raide qui donnait à l »entrée de la galerie une vitesse de l »ordre de 36 KM/H aux blocs et une traversée en 10 s de cette galerie, avec à l’arrivée une rampe de freinage ascendante qui laissait « mourir » les blocs sur le pas de chargement.

Les mégalithes et les blocs du parement arrivant à la pyramide par la chaussée orientale en provenance de la plaine du Nil, il leur eut été facile de surélever la fin de cette chaussée de cette hauteur de 5.7 m, mais ce ne fut pas la solution choisie par les constructeurs. En effet Il leur fallait aussi élever de la même hauteur toutes les pierres du remplissage en provenance des carrières du plateau, qui elles étaient au moins pour partie sous le niveau de la base.

Les constructeurs ont donc choisi de faire une élévation de 6 m environ de toutes les pierres devant l’entrée orientale de la pyramide, 3 « fosses à barques solaires » pour reprendre leur désignation par les archéologues en témoignent encore sur le parvis oriental de la pyramide, une au sud, une au nord et une à l’est.

Ces fosses ayant été les « puits » d’élévateurs à flotteur deuxième génération pour une portée de 6 m environ.

Les fosses sud et nord parallèles à la face est pour les pierres de remplissage, nous disent que deux localisations de carrières furent utilisée, une au SE de la pyramide de Khéphren et une au NO de la même pyramide.

La fosse orientale ayant été utilisée pour les pierres du parement et les blocs en granite de la chambre haute et du complexe mortuaire.

fosse E-O

La grande fosse « à barque » située à l’est juste avant le temple haut nous indique la méthode utilisée pour élever les blocs.

Fosse vue du ciel
Credit Maraglioglio & Rinaldi

Cette fosse fait plus de 7 m de profondeur pour 43 m de longueur et 6 m de largeur elle est taillé en forme de bateau pour sa moitié Est, en forme de rampe en pente douce pour sa partie ouest.

Fosse-EstBiais-dessus&coupelong
Credit Maraglioglio & Rinaldi

Quand on a déjà compris le fonctionnement des flotteurs élévateurs de deuxième génération, il n’est pas difficile de reconnaître ici la trace de l’un d’entre eux pour une hauteur d’élévation de l’ordre de 5.7 m et une charge maximum de l’ordre de 65 tonnes.

Lire la suite

La chronologie Égyptienne au risque de son calendrier

Pour en savoir plus sur le calendrier Égyptien

La chronologie égyptienne est très confuse, car les rois avaient coutume de dater les années à partir du début de leur règne, pour s’y retrouver 4000 ans plus tard, il faut connaître tous les rois et la durée de leurs règnes, au résultat à ce jour il n’y a pas une mais plusieurs chronologies, qui sont par ailleurs tenues dans le calendrier Julien et non pas Égyptien.

Je me suis longtemps demandé, comment se faisait-t-il que des « prêtres » si précis et rigoureux, totalement informés des mouvements du ciel sachant que l’année durait 365 jours 1/4 aient promu un calendrier de 365 jours sans années bissextiles qui soit constamment en décalage avant par rapport au ciel.

La réponse m’est venue après des mois de réflexions par la datation des levers héliaque de l’étoile Sirius:

Cette étoile, la plus brillante du ciel, permet d’observer son lever un tout petit peu avant celui du soleil, ce qu’on appelle lever héliaque, c’est donc le marqueur d’une nouvelle année qui intervient tous les 365.25 jours.

La différence de hauteur dans le ciel entre Sirius et le soleil est appelée « arcus visionus » cette valeur fait que malgré l’éclairage du ciel par le soleil juste avant son lever, on peut encore observer un court moment le lever de l’étoile Sirius à l’horizon avant que le soleil ne l’éteigne. Cette valeur se tient entre 8 et 9 degrés d’arc.

Le calendrier « civil » Égyptien, parfois appelé « vague »,  ne contenant que 365 jours, prend tous les 4 ans un jour d’avance sur le lever héliaque de Sirius.

Ainsi au fil du temps, au bout de 1460 ans (période Sothiaque), la date du lever héliaque de Sirius aura parcouru tout le calendrier, ce qui fait que chaque jour du lever héliaque de Sirius est le marqueur d’un cumul d’années depuis le I Akeht 1 qui est le premier jour de la première année de mise en oeuvre du calendrier.

Il suffit de lire le jour du lever héliaque de Sirius pour connaître l’année avec une imprécision de +/- 3 ans toutefois.

Ainsi dès le départ du calendrier, on pouvait écrire toute la chronologie future fonction de la date égyptienne de l’observation du lever héliaque de Sirius.

Akhet Peret Shemou sont les 3 saisons, chacune de 4 mois, chacun de 30 jours, 5 jours supplémentaires dits épagomènes complètent les 365 jours.

Cumul LHS Absolu

Pour continuer I Akhet 1 année 2920 début de la troisième période Sothiaque de 1460 ans parfois appelée « grande année ».

Exemple: le lever héliaque de Sirius survenu le II Shemou 1 nous place soit en 1080 soit 2540 du début du calendrier, avec toutefois une imprécision de +/- 3 ans.

Il nous manque cependant une information, c’est la date de départ du calendrier Égyptien exprimée dans le calendrier Julien.

Néanmoins il est possible d’établir une synchronisation, sur une date du calendrier Julien dont on connaît le jour Égyptien du lever héliaque de Sirius.

En l’an 139 du calendrier Julien, le Grammairien Censorinus, fit l’observation d’un lever héliaque, le I Akhet 1 du calendrier Égyptien encore en service à cette époque dans l’empire.

Le lieu d’observation du lever héliaque peut être pris dans la zone d’Alexandrie, siège du pouvoir Romain/Égyptien à cette époque, ce fut donc un 19 juillet avec une arcus visionus de 9°, la nouvelle lune était alors vieille de 6 jours.

Si l’observation de Censorinus avait été exacte on aurait pu avoir un démarrage du calendrier Égyptien  -2920 années plus tôt soit 2 périodes Sothiaques.

On peut ainsi exprimer la chronologie égyptienne en années Juliennes:

Le calendrier Égyptien aurait démarré en -2781 du calendrier Julien, date d’un lever héliaque de Sirius dans la zone d’Alexandrie, du fait de la précession des équinoxes, l’observation eut été faite un 17 juillet et non pas un 19. Jour de nouvelle lune

Cerise sur le gâteau le 17 juillet -2781 était également le jour du solstice d’été.

cumul LHS Julien

Pour finir I Akhet 1 = 19 juillet 139 date de l’observation de Censorinus.

Par exemple un lever héliaque de Sirius relevé un II Shemou 1 nous met en -1701 où en -241 +/-3.

Si les quelques levers héliaques de Sirius relatés dans la longue histoire Égyptienne, avaient été observés dans un autre lieu, il aurait fallu corriger la date du jour avec le décalage de lever de Sirius entre ce lieu et Alexandrie.


Les anciens Égyptiens étaient « des malades de la précision », il est tout à fait inconcevable qu’ils aient construit un système qui laisse une imprécision de +/- 3 ans sur une date.

Pour lever cette incertitude, ils avaient un calendrier lunaire qui courrait en parallèle avec le calendrier Sothiaque, le cycle lunaire dit synodique dure 29,53058885 jours entre deux lunaisons, l’année lunaire de 12 mois durait donc 354,3670662 jours et se décalait régulièrement de 10.6329338 jour du calendrier civil tous les ans, soit 0.36006508 de cycle lunaire, ou très proche de 1 quartier 1/2 tous les levers héliaques.

Les levers héliaques successifs présentaient donc systématiquement un quartier de lune différent. Au bout de 14 ans 5 cycles lunaires complets avait été constatés le premier jour de l’an avec retour du quartier présent le premier jour de la mise en service du calendrier, plus un décalage imperceptible de 1.6 dixième de quartier.

Ce léger décalage fit qu’au bout de 25 ans on avait pu constater 9 cycles complets plus une décalage totalement invisible de 4/1000 de quartiers.

Cent cycles de 25 ans couvrant la quasi totalité de la civilisation égyptienne la correspondance entre le quartier de lune et le jour du lever héliaque se reproduisait à l’identique tous les 25 ans sur toute la durée de la civilisation.

Pendant les 25 premières années d’usage du calendrier, les prêtres avaient donc eu tout le loisir d’établir une table de correspondance entre le lever héliaque de Sirius et la phase de la lune ce jour là, table qui se reproduisait à l’identique tous les 25 ans.

Par ce double usage de la lune et de Sirius, le calendrier civil était aussi une chronologie, passée et future qui donne à chaque lever héliaque de Sirius l’année exacte depuis le départ du calendrier en fonction de la date du jour de observation prise dans le calendrier « civil » parfois appelé « vague » et de la phase de la lune.

Avec ce filet de sécurité « en béton », les anciens Égyptiens, pouvaient donc faire partir leur chronologie apparente de l’année de prise de fonction de chaque pharaon sans risquer de se perdre au fil du temps, des aléas du pouvoir et des périodes dites « intermédiaires ».


Nous pouvons maintenant faire un test de cohérence avec d’autres observations d’un lever héliaque.

La chronique nous rapporte l’observation d’un lever héliaque sous Amenhotep I an 9, le III shemou 9  en période de pleine lune.

Quelle serait la date Julienne de cette observation?

Il faut faire une hypothèse sur le lieu de l’observation, je vais opter pour Thèbes qui était à cette époque le lieu du pouvoir. L’observation du lever héliaque à Thèbes a 6 jours d’avance sur Alexandrie, je dois donc rectifier la date au III Shemou 15 pour Alexandrie.

III Shemou 15 est le jour 315 de l’année, il s’est passé 315 x 4 = 1260 +/- 3 années depuis le début du calendrier.

Ce qui place l’année Julienne de cette observation en -2781 + 1260 = -1521 +/- 3

Dans cette période, pour que la pleine lune coïncide à Thèbes avec le lever héliaque de Sirius, il faut se placer le 12 juillet -1523,  .

Donc l’observation du lever héliaque de Sirius faite sous Amehotep I eut leu à la date Julienne du 12 Juillet -1523 à Thèbes, ce qui place le début du règne en -1532

Cette observation contredit la chronologie « officielle » qui place de règne d’Amenhotep I de -1514 à – 1493.

Si l’observation du lever héliaque avait eu lieu à Héliopolis et non pas à Thèbes, les même calculs aboutissent au 16 juillet -1549 année encore plus éloignée de la période supposée pour Amenhotep I et si Assouan avait été le lieu de l’observation il n’y aurait pas eu de date compatible avec une pleine lune.

Une autre observation réputée faite sous Sethy I donne an 4 le I Akhet 1, sans mention de la phase de a lune, si le lieu avait été Thèbes la date équivalente à Alexandrie eut été I Akhet 7 à Alexandrie soit 1460 + 28 = 1486 années depuis le début du calendrier donc le 16 juillet -1295 +/- 3, donnant un début de règne en -1299 +/-3, alors que le règne de Sethy I est supposé se tenir entre -1294 et -1283. L’observation montre à minima 2 ans d’écart avec la chronologie « officielle ».

Autre observation portée sur un objet en ivoire datant du règne de Djer indique aussi le I Aket 1 sans indication de la phase lunaire, ni du lieu qui s’il s’était tenu dans la zone d’Alexandrie porterait cet événement au 17 juillet -2781 +/- 3, date du début du calendrier.

Quelque temps plus tôt une observation sous Mentouhotep II signale un lever héliaque le II Peret 21, sans mention de la phase de la lune, ni du lieu, qui s’il fut dans la zone d’Alexandrie aurait porté cette date en juillet -2097 +/- 3 . Si le lieu eut été Thèbes, il aurait fallu ajouter 7 jours donc 28 ans soit -2069 +/-3, alors que le règne de Menthouhotep est supposé s’être tenu entre – 2045 et -1994. Il y a donc incompatibilité de l’observation avec la chronologie « officielle ».

Testons l’observation sous Thoutmosis III , pleine lune, lever héliaque, an 25 le III Shemou 28.

Il faut ajouter 7 jours si l’observation avait été faite à Thèbes, soit IV Shemou 5 donc 335 jours dans l’année et 1340 ans depuis le début du calendrier, ce qui place cet événement en -1441 +/- 3.

Le lever héliaque ayant été observé à Thèbes ce fut un 12 juillet -1444 et la pleine lune avait deux jours. Le règne aurait donc dû commencer 25 ans plus tôt soit en -1469. La chronologie place le début du règne en -1472 soit 3 ans d’écart.

Testons l’observation sous Auguste an 5, III Shemou 25, l’observation aurait pu à cette époque être faite à Alexandrie. III Shemou 25 est le jour 325 du calendrier donc présente une durée de 1300 années, il faut ici ajouter une période Sothiaque de 1460 ans soit 2760 années depuis le début du calendrier soit -2781 + 2760 = – 21 +/-3, soit un début de règne en -26 ± 3. Très peut d’écart avec le règne d’Auguste de -30 à 14.

Enfin une observation nous est rapportée d’un lever héliaque de Sirius sous Ptolémée III, an 9, le II Shemou 1, sans mention de la lune, ni du lieu, qui peut être pris ici à Alexandrie. Cette date donne le jour 271 de l’année donc 1084 ans plus une période Sothiaque soit 2541 ans depuis le début du calendrier, ce qui nous conduit à un 19 juillet -240 +/-3, ce qui place le début du règne en -245 +/-3 année compatible avec le règne de Ptolémée III donné par la chronologie « officielle » pour s’être passé entre -246 et -221.

Sauf pour Mentouhotep II, et Amehotep I, le calendrier Égyptien donne des dates assez proches de la chronologie « officielle »

Le calendrier Égyptien étant lui, un instrument fidèle et de précision, certains ajustements devraient être faits dans les chronologies Égyptiennes pour en tenir compte.

Angles dans les pyramides

Tout le monde l’aura compris une pyramides est avant tout une affaire d’angles.

Mais curieusement on constate que les angles des pyramides ont au regard de nos habitudes des valeurs très quelconques, par exemple dans la pyramide de Chéops, très proches de 26°56 pour les descenderies intérieures et 51°84 pour l’angle des faces avec l’horizontale, 42° pour l’angle des arêtes avec l’horizontale dans le plan médian.

Ceci provient du fait que les anciens égyptiens de caractérisaient pas les angles en degrés, mais indirectement par leur cotangente le seked, ou seked, information qui nous vient du moyen empire, mais il se pourrait qu’à l’occasion le sinus ou le cosinus ou la tangente aient été utilisés.

Donc les angles choisis avaient au moins une valeur de ces grandeurs aussi simples que possible a mesurer en utilisant leur échelle de mesure rapportée à la coudée royale dont la plus petite subdivision = le doigt fait 1/28.

Pour les nombres les anciens égyptiens n’utilisaient pas la notation décimale, mais la notation fractionnaire.

On peut donc s’attendre à ce que une ou plusieurs des valeurs trigonométriques d’un angle égyptien puisse s’exprimer en multiple entier de la fraction 1 / 28.

Les archéologues divers se sont ingéniés à nous rapporter les angles des pyramides en degrés, minutes, secondes, il auraient mieux fait de nous en rapporter la tangente, le sinus ou le cosinus rapport exprimé en fraction égyptienne de longueur rapportée à la coudée, par exemple un angle de 45° aurait été désigné par un seked de 1 coudée.

En procédant ainsi pour les angles comme ils l’ont fait pour les longueurs exprimées en coudées royales, les mesures auraient plus facilement été significatives.

La coudée royale MH NSWT coudée

coudée

  • La coudée était divisée en 28 segments de 1 doigt.
  • La palme faits 4/28 ou 1/7, la double palme, le double.
  • La petite griffe 12/28 ou 3/7 correspondant à 3 palmes.
  • Le Djéser 16/28 ou 4/7 vaut 4 palmes.
  • La coudée rémen 20/28 ou 5/7 vaut 5 palmes.
  • La petite coudée 27/28 ou 6/7 vaut 6 palmes.

En conséquence lorsqu’on trouve un angle dans une pyramide il faut vérifier qu’une de ses fonctions trigonométriques peut être exprimée dans les fractions des unités de mesures.

Prenons l’exemple de l’angle de la face avec l’horizontale mesuré par Petrie qui a utilisé diverses méthodes de mesure dont chacune donne un résultat différent:

AngleFaceMesuresPetrie

Finalement il propose de retenir la valeur 51°52′ avec une incertitude de mesure de +/- 2′, soit un intervalle entre 50′ et 54′.

De cette valeur ayant mesuré la base il en déduit la hauteur.

Sa mesure pour la base moyenne est 9068.8 pouces ou 230.34 m ce qui avec une coudée royale de 0.5235 m donne exactement 440 coudées, la hauteur devient 220 x tangente 51°52′ soit 280, 24 coudées.

On peut supposer que les constructeurs ayant un nombre entier de coudées pour la base l’aient aussi pour la hauteur, soit 280 coudées ce qui donne finalement une cotangente ou seked égale à 22/28 qui est un multiple entier de la plus petite division de la coudée. Une double palme + une grande griffe.

En conclusion l’angle le plus probable dans notre notation aurait été 51°50’35’ qui entre dans la fourchette d’incertitude trouvée par Petrie.

On peut anticiper que n’importe quel angle de la pyramide possède au moins une fonction trigonométrique, sinus ou cosinus ou tangente ou cotangente exprimable en multiple entier de la fraction 1/28 en fait un nombre entier de « doigts ».

Pour les descenderies angle 26°56, son seked fait 2, la tangente fait 1/2 ou un grand empan et le cosinus est très proche de 25 / 28, ou une petite coudée + un doigt.

Dans chaque année de la construction, à partir du 22 mars jusqu’au 1 novembre, avec cette valeur de pente des faces, il se trouvait deux jours où la face nord avalait son ombre, ainsi que les faces est et ouest et les arêtes nord (chacune pendant des jours différents). Ce qui permettait de vérifier en cours de construction l’alignement correct de la pyramide avec l’objectif de sa géométrie.

Utilisant ainsi le soleil comme instrument de mesure géant, à la taille de la pyramide!

La veille du jour ou l’arête NO de la pyramide avalait son ombre, on pouvait observer l’arête éclairée par le soleil azimut 135° se détachant des faces nord et ouest toujours dans l’ombre, quel spectacle!

Par ailleurs, il se trouve que l’angle de 51.8° donne un rapport 22/7 entre le périmètre de la base et la hauteur valeur proche de π à 1 pour mille et donne un rapport entre l’apothème d’une face et la demi base proche du nombre d’or avec une précision encore meilleure, ce n’est probablement pas par hasard!

Une autre mesure est amusante à commenter, l’orientation Nord Sud des faces Est Ouest que les archéologues ayant fait la mesure qualifient « d’erreur » quand ils ont trouvé une déviation de 3′ ce qui est extrêmement faible.

Cependant quand on lit le texte de leur mesure, à aucun endroit on ne trouve le moyen qu’ils ont utilisé pour connaître le « vrai » nord, la boussole, l’étoile polaire, le soleil au zenith ? Ni la méthode pour mesurer l’écart avec cette vraie valeur ?

Je pense pour ma part qu’il était beaucoup plus simple et fiable pour les anciens égyptiens d’orienter leur pyramide non pas vers le nord mais vers le soleil, le dieu Râ, alors que ne nord ne représentait rien du tout sinon les ténèbres et la mort.

Derniers étages de la Grande pyramide

A partir de la cote + 80 m, il restait à bâtir une pyramide aussi volumineuse que la première pyramide à degrés de Saqqarah, qui avait nécessité la mise en oeuvre de 11 puits en parallèle pour être construite, mais ici il fallait être plus performant.

Grâce à l’augmentation considérable de la dimension des blocs par rapport à ceux de Saqqarah, dans la grande pyramide il ne restait que de l’ordre de 2 à 300 000 blocs à assembler, soit dix fois moins que dans la pyramide de Saqqarah pour faire ce volume. Il ne restait dans le planning que de l’ordre de 500 à 1000 jours pour terminer la pyramide, soit toujours le même rythme de 400 blocs par jour, soit environ 90 s par bloc.

Dès la pyramide de Meidum, l’architecture du flotteur a évolué en abandonnant le lourd contre poids, contre un guidage du flotteur par les parois du puits et de la cage multipliant par 4 le débit du flotteur par rapport à la première génération utilisée à Saqqarah.

Dans une pyramide lorsqu’on arrive au sommet, il ne reste que peu d’espace pour travailler, il fallait donc une section de cage aussi réduite que possible.

L’examen de l’assise 201 de la pyramide de Chéops, nous montre un bloc qui pourrait être le vestige du bouchage de la cage mesurant environ  0.57 × 1 × 2,5 m pesant 3.6 t.

Cette section de 1 × 2.5 m pouvait permettre le passage d’un bloc de 4 t présent sur cette assise.

201assisegeometrie7

Fonctionnement du flotteur:

Pour fixer les idées, prenons l’exemple d’un flotteur de 2 M² de section capable de lever une pierre de 4 t à 33 m de hauteur dans un puits de 38.5 m de profondeur. On admettra pour l’exemple que la pierre la plus lourde pour cette assise 201 pesait justement 4 t.

La tige qui prolonge le flotteur est faite en treillis qui peut bien peser de l’ordre de 50 Kg au mètre pour une section de 2 M², soit 1.5 t pour 33 m de portée et un volume de 2 M³. Le flotteur lui-même aurait pu être construit en bois massif en partie haute prolongé d’une jupe en partie basse. Car en s’enfonçant quand le flotteur coule, la tige recevait une poussée d’Archimède correspondant à son volume immergé, il fallait compenser cette poussée supplémentaire par une diminution du volume du flotteur, ce qui fut obtenu en réservant dans le flotteur un volume d’air qui en se comprimant au cours de la descente, diminuait de volume.

En admettant que la densité moyenne du flotteur fut 0.5, celui-ci devant soulever la charge plus la tige plus son propre poids, devait faire un volume de 11 M³ et peser 5.5 t.

Sa longueur était donc de 5.5 m et pour une portée de 33 m le puits devait donc avoir une profondeur de 33 + 5.5 = 38.5 m.

L’ensemble mobile flotteur plus tige pesait donc 7 t, avec la technologie de Saqqarah, il aurait pesé de l’ordre de 30 t.

Flotteur au fond du puits, la pression absolue dans la jupe était de 4.85 Kg/CM², en position haute elle passait à 1.55 Kg/CM², les 2 M³ de la tige devaient donc être compensés par 2 M³ de diminution de la poche d’air dans le flotteur sous l’effet de l’augmentation de la pression. Le calcul aboutit à une volume d’air de 1 M³ en position basse pour 3 M³ en position haute et 4 M³ flotteur à l’air libre, ce qui laisse 7 M³ pour le reste de la structure du flotteur qui pesant 5.5 t avait donc une densité de 0.8.

Naturellement ces valeurs sont approximatives pour fixer les idées, dans la réalité l’ajustage aurait été beaucoup plus précis.

Dans la pyramide de Chéops, la hauteur d’assise atteinte par le troisième étage d’ascenseur est de 80 m, il en restait 66 pour arriver au sommet, donc avec 33 m de portée deux étages de flotteur submersible suffisent.

Chaque étage est donc fait d’un puits de 38.5 m de profondeur prolongé par une cage de 33 m, soit 71.5 m en tout, ce qui met le fond du puits du premier étage de flotteur submersible, ou quatrième étage d’ascenseur à 80 – 38.5 = 41.5 m soit le niveau du sol de la chambre haute et le fond du puits du deuxième étage de flotteur submersible ou cinquième étage d’ascenseur à 74.5 m d’altitude.

Il faut maintenant bien comprendre que l’ensemble mobile = flotteur + charge pesait toujours le même poids à +/- 100 Kg près, + 100 Kg il coulait, – 100 Kg il flottait.

Avec un dimensionnement prévu pour une pierre de 4 t, 4 t de lest fait de lingots de cuivre pouvait prendre place sur le flotteur en remplacement de la pierre pour le faire couler. Une partie de ce lest était constitué par des opérateurs dont le poids était normalisé admettons ici à 110 Kg, par une tare qu’ils portaient sur eux toute la journée.

Bien évidemment 2 M² de plateau ne peuvent porter que de l’ordre de 10 opérateurs au maximum, soit 1.1 t de poids, le poids maximum du bloc étant de 4 t, il fallait un complément de lest de lingots de cuivre de 3 t pour faire couler le flotteur.

Au résultat, cet élévateur était seulement capable d’élever 1 t par course en valeur moyenne. Pour élever 4 t, il devait d’abord faire 3 courses pour élever préalablement 3 t de lingots pour préparer la descente du plateau après que la charge de 4 t ait été retirée.

Il faut bien comprendre ici que cette capacité à élever un certain poids est une conséquence directe du nombre d’opérateurs que le plateau peut accueillir = donc sa surface et du poids unitaire des opérateurs.

Au final le débit de cet élévateur est limité d’une part par la surface de son plateau et par la vitesse de chute admissible. On pouvait accélérer le mouvement en perdant du rendement énergétique, mais pas au point de détruire la tige qui devait absorber l’énergie cinétique de la charge au point de chute, ni de blesser les opérateurs.

Ainsi par exemple, pour conserver le rythme de 1000 t de pierres posées par jour, il aurait fallu que cet élévateurs fasse 1000 courses par jour, pour une journée de travail de 12 H cela fait soit une course en 43 S en moyenne. Un calcul montre qu’une différence de poids de 90 Kg entre l’équilibre hydrostatique et le poids qui fait flotter ou couler l’équipage mobile aurait suffit pour actionner l’ensemble mobile à la vitesse voulue, ne donnant à la course maximale qu’une vitesse de chute de 13 KM/H lors de l’impact au point bas ce qui est acceptable.

Donc l’exemple pris aurait pu rendre le service attendu.


Imaginons maintenant un jour ordinaire de construction sur la 201 ième assise niveau 136 m:

Le poids du jour est de 3.9 t, le pas de chargement du cinquième et dernier étage se situe au niveau 80 + 33 = 113 m, les pierres y sont livrées par le quatrième étage. La portée d’élévation du jour est donc de 136 – 113 = 23 m, le niveau d’eau dans le puits à été ajusté pour cette portée.

Au petit matin, les opérateurs des cinq étages soit de l’ordre de 400 ouvriers arrivent progressivement sur l’assise au niveau 136 m en grimpant avec des cordes le long des faces de la pyramide (ce sont des athlètes entraînés pas des paysans faméliques). En entrant sur le chantier, les opérateurs ont été lestés pour peser 110 KG. Les opérations de la veille avaient laissé au niveau 136 M le plateau du flotteur lesté de 2.9 t de lingots de cuivre.

Les 10 premiers opérateurs prennent place sur le plateau, le dixième fait monter le poids à 4 t ce qui couler le flotteur qui descend lentement. Arrivé au niveau 113, le plateau est bloqué en position, les 10 opérateurs, descendent et procèdent à la même opération avec l’étage inférieur.

Mais avant, ils chargent sur le plateau qu’ils viennent de quitter 1 t en lingots de cuivre car il n’y a pas encore de pierres à monter, le plateau pesant 3.9 t remonte, une deuxième rotation va faire descendre 10 autres opérateurs et remonter 1 t de lingots, même chose à l’étage inférieur.

Ainsi les 400 opérateurs descendent progressivement par paquets de 10 à l’intérieur de la pyramide, et rechargent le stock de lingots des niveaux supérieurs, les opérateurs qui quittent les 2 ascenseurs à flotteurs coulés, lancent progressivement toujours en descendant les 3 ascenseurs à flotteurs oscillants, quand tous sont en état de fonctionner, les  premiers opérateurs sont tous descendus et ont commencé leurs ascensions de la pyramide. Les premiers étages peuvent commencer à faire monter les pierres qui de paliers en paliers vont arriver au niveau 80 puis 113 m.

Cet ascenseur rustique avec une seule pièce en mouvement, actionné manuellement, consomme à chaque rotation l’énergie potentielle de 1.1 t sur 23 m de hauteur, soit 248 KJ, ce qui avec un cycle de 20 s représente une puissance utile instantanée de 12.4 KW!

Cependant le cycle moyen étant de 90 s et le poids moyen de 2.5 t, la puissance moyenne consommée dans la journée par le dernier étage sera de 6.3 KW .

Pour arriver de zéro à 136 m toutes les 90 s cette pierre moyenne de 2.5 t, aura nécessité la mise en oeuvre d’une puissance de 37 KW, soit un effectif total d’environ 400 opérateurs à la manœuvre sur les 5 étages de flotteurs de la pyramide, au rythme de 20 opérateurs sortant de la galerie d’entrée toutes les 90 s et prenant les cordes pour grimper avec leurs bras et leurs jambes sur l’assise 201 au niveau 136 m, puis redescendre en cascade les 5 étages d’ascenseurs.

On peut observer que les constructeurs avaient beaucoup de marges de manœuvres pour optimiser leurs opérations.

En contre partie de la simplicité de cet ascenseur, une seule pièce en mouvement, comme TOUJOURS dans les pyramides on remarquera la précision d’exécution dans les poids mais aussi dans la maçonnerie des puits et cages, sans oublier la menuiserie du flotteur et de la tige.

Lecture hydraulique Pyramide de Mykérinos

Base 104 m, hauteur 65 m, angle 51°20′ tangente = 35 / 28 volume 0.237 MM³, rayon de la sphère de protection 25 m

Hauteur du complexe mortuaire 25 m

D’après la Chronologie du « consensus », la pyramide attribuée à Mykérinos est l’ultime des 7 « grandes pyramides », son volume ne représente que le dixième de la pyramide attribuée à Chéops, ou dit autrement elle représente le volume de la pyramide de Chéops de la cote + 80 m au sommet.

Cette partie de la pyramide de Chéops a pu être terminée en un délai de l’ordre de 2 ans, c’est donc sur cet ordre de grandeur de délai de construction qu’il faut examiner la pyramide de Mykérinos, dont les vestiges témoignent d’un certain degré d’urgence.

Pour le parement de la pyramide, à cette époque le centre de compétence de la taille du granite se situait à Assouan 900 KM plus au sud, le calepinage du parement se faisait donc à l’avance sur plan et non pas au vu du montage de la pyramide.

L’examen des restes de ce parement permet d’imaginer une certaine précipitation:

  1. Les blocs ne sont pas parallélépipédiques, ce qui signifie que l’on a débité les pierres au mieux de la configuration du banc de taille, sans chercher à faire des blocs réguliers, ce qui est le signe d’une recherche de rapidité et d’économie de coût.
  2. Le brusque changement dans la finition de la surface du parement, une surface plane, laissant place à une surface « brute de coupe » témoigne d’un ordre brusque arrivant en cours de travail, demandant d’accélérer la livraison des pierres au prix de la qualité de la finition.

parement

De même l’existante de deux descenderies, l’une provisoire près de centre et très courte, doublée de la descenderie définitive, témoigne que l’on a voulu gagner du temps dans le creusement des volumes souterrains.

Cette pyramide s’est construite dans l’urgence, il n’était pas question de prendre le risque d’innover, il fallait utiliser les solutions éprouvées.

Les constructeurs avaient bien conscience qu’en divisant par dix le volume de la pyramide, ils diminuaient grandement la barrière de pierres protégeant le complexe mortuaire, et pour compenser la réduction de la protection « physique », ils ont investit dans la protection « psychologique », ce qui explique la configuration de « la chambre funéraire » quasi déconnectée du circuit hydraulique et très soignée avec sarcophage en pierre sculpté et sarcophage en bois, plus une chambre à six niches sensées probablement contenir du mobilier funéraire.

Contrairement à toutes les autres pyramides, cet ensemble « funéraire » n’a aucune fonction hydraulique dans la pyramide.

La grande balafre au milieu de la face nord, que l’on attribue au sultan Malik al-Aziz au XII° siècle, témoigne néanmoins de l’efficacité de la barrière physique, car sa tentative a échoué, le sultan ayant abandonné au bout de 12 m de pénétration, il aurait fallu qu’il prolonge sa tranchée de 20 m pour arriver à ses fins, au risque de voir la pyramide s’écrouler dans la tranchée.

w896ix
Crédit Djedefre forum ddchampo.com

Néanmoins le fait que le sultan ait fait creuser dans la pyramide à l’horizontale à 20 m de hauteur, permet de supposer qu’il avait compris le principe du complexe funéraire au centre de la pyramide. Contrairement à lui, le Colonel H.Vyse au XIX° siècle, tirant profit de cette sape a quant à lui creusé dans la pyramide à la verticale, cherchant la chambre funéraire en bas comme tout archéologue qui se respecte!

BrecheMykerinos

Cependant la partie horizontale de son tunnel arrive à 5 m du centre de la pyramide, sans le savoir, il a manqué le complexe mortuaire de très peu, un mètre ou deux tout au plus!

Il a ainsi « mâché le travail » pour tout archéologue décidé à trouver le roi dans sa pyramide.

Circuit Hydraulique:

La descenderie démarrant de le face nord de la pyramide à 4 m de hauteur, se prolonge en pente à 26° sur 32 m en donnant dans une première salle de 3.6 x 3.16 m, débouchant sur un corridor horizontal bouché par 3 herses de granite. Ce corridor débouche dans une grande salle de 14 x 3.85 x 4.85 m dont l’extrémité se trouve dans l’axe de la pyramide et débouche sur un volume de 4 x 4 m de section.

La grande salle faisant 54 M² aurait pu servir de réservoir d’eau, si l’on s’en tient à « la norme » de la grande pyramide, un flotteur du type oscillant ne devrait pas alors dépasser la section de 2 M², or le volume attenant qui ne peut être que le puits vertical contenant le flotteur élévateur faisant 16 M², il faut en déduire que nous avons à faire ici à la technologie du flotteur submersible deuxième génération.

Compte tenu des pyramides qui précèdent, on peut supposer que deux étages de 33 m aient pu y élever toutes les pierres,  on peut supposer un puits démarrant du niveau zéro de 35 m de profondeur, contenant un flotteur de 35 m de long de portée 33 m, coulissant dans une cage de 33 m de hauteur. Cette cage donnant accès au complexe funéraire à la cote + 25 m.

La section de la cage de 16 M² permet d’élever des pierres de poids pouvant aller de 8 t dans une procédure « normale » à 30 t et plus en s’y reprenant à plusieurs reprises avec utilisation de lest provisoire.

Cette pyramide ayant été « négligée » en terme de mesures, on ne connaît pas bien la dimension des pierres qui la constitue, cependant au vue des photos, elles semblent du même gabarit que celles du haut de la pyramide de Chéops, cependant le complexe mortuaire peut révéler bien des surprises.

Si l’on mesure précisément la position de ce puits dans la pyramide, on peut anticiper que l’antichambre d’entrée du complexe mortuaire se situe à 25 +/- 3 m de hauteur dans son prolongement.